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Abstract

Recently, Papachristos and Skouri developed an inventory model in which unsatis3ed demand is partially backlogged at
a negative exponential rate with the waiting time. In this article, we complement the shortcoming of their model by adding
not only the cost of lost sales but also the non-constant purchase cost.
c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

In a recent paper [9], Papachristos and Skouri stud-
ied a continuous review inventory model with deter-
ministic varying demand and constant deterioration
rate. They developed an inventory model that allows
for shortages, which are partially backlogged at a neg-
ative exponential rate with the waiting time. They
then provided an optimal solution to minimize the to-
tal cost. However, they did not include the cost of
lost sales due to shortages and the purchase cost for a
non-constant order quantity into the total cost. If the
total cost does not include the cost of lost sales (i.e.,
the cost of lost sales is zero), then the optimal solution
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that minimizes the total cost will have a large number
of lost sales, which in turn implies a small pro3t. In ad-
dition, if the shortages are partially backlogged, then
the total purchase cost is not a constant. Therefore, if
we omit the purchase cost from the total cost, it will al-
ter the optimal solution. To correct them, we add both
the cost of lost sales and the purchase cost into the
total cost suggested by Papachristos and Skouri [9].
Moreover, the demand rate based on their Assump-
tion 5 must be an increasing (or decreasing), contin-
uous, log-concave function of time. From a product
life cycle, we know that their demand function is suit-
able only for the growth stage or the declining stage.
For generality, we also relax their Assumption 5 to al-
low for any positive and log-concave demand pattern.
Therefore, the proposed model here is suitable for any
given time horizon in a product life cycle. Futhermore,
we extend the fraction of unsatis3ed demand backo-
rdered to any decreasing function of the waiting time
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up to the next replenishment. As a result, the proposed
model is in a general framework that includes numer-
ous previous models such as in [1,3–5,7,8,10–15] as
special cases. We then prove that the optimal replen-
ishment schedule not only exists but also is unique. In
addition, we show that the total relevant cost (i.e. the
sum of the holding, backlogging, lost sales, and pur-
chase costs) in the system is a convex function of the
number of replenishments. Consequently, the search
for the optimal number of replenishments is reduced
to 3nding a local minimum. We further simplify the
search process by providing an intuitively good start-
ing value for the optimal number of replenishments.
Finally, we characterize the inFuences of the demand
patterns over the replenishment cycles and others.

2. Assumptions and notation

The mathematical model of the inventory replenish-
ment problem is based on the following assumptions:

1. The planning horizon of the inventory problem here
is 3nite and is taken as H time units.

2. Lead time is zero.
3. Shortages are allowed.
4. The initial inventory level is zero.
5. A constant fraction of the on-hand inventory dete-

riorates per unit of time and there is no repair or
replacement of the deteriorated inventory.

6. The fraction of shortages backordered is a decreas-
ing function �(x), where x is the waiting time up
to the next replenishment, and 06 �(x)6 1 with
�(0) = 1. To guarantee the existence of an opti-
mal solution, we assume that �(x) + H�′(x)¿ 0,
where �′(x) is the 3rst derivative of �(x). Note that
if �(x)=1 (or 0) for all x, then shortages are com-
pletely backlogged (or lost).

7. If the objective is minimizing the costs, then we
assume that the cost of lost sales is the sum of the
cost of lost revenue and the cost of lost goodwill.
However, if the objective is maximizing the prof-
its, then the cost of lost sales is the cost of lost
goodwill only. In contrast to ours, other researchers
may de3ne the cost of lost sales in a maximization
problem as gross pro3t margin plus loss of good-
will to encourage more sales.

For convenience, the following notation is used
throughout this paper:

f(t) demand rate at time t, we assume without
loss of generality that f(t) is positive and
log-concave in the planning horizon (0; H ]

� the deterioration rate
p the selling price per unit
cf the 3xed purchasing cost per order
cv the variable purchasing cost per unit
ch the inventory holding cost per unit per unit

time
cs the backlogging cost per unit per unit time

due to shortages
cg the cost of lost goodwill
cl the unit cost of lost sales. Note that if the

objective is minimizing the costs, then cl=
p+cg¿cv. If the objective is maximizing
the pro3ts, then cl = cg

n the number of replenishments over [0; H ]
(a decision variable)

ti the ith replenishment time (a decision
variable), i = 1; 2; : : : ; n; with 06 t1¡t2
¡ · · ·¡tn¡H

si the time at which the inventory level
reaches zero in the ith replenishment cy-
cle (a decision variable), i = 1; 2; : : : ; n

3. Mathematical model

The ith replenishment is made at time ti. The quan-
tity received at ti is used partly to meet the accumu-
lated backorders in the previous cycle from time si−1

to ti (si−1¡ti). The inventory at ti gradually reduces
to zero at si (si ¿ ti). Consequently, based on whether
the inventory is permitted to start and=or end with
shortages, we have four possible cases, which were
introduced in Teng et al. [13,14]. For an easy compari-
son, we use the same inventory model as in Papachris-
tos and Skouri [9], which is depicted graphically in
Fig. 1. The objective of the inventory problem here
is to determine the number of replenishments n, and
the timing of the reorder points {ti} and the shortage
points {si} in order to minimize the total relevant cost.
Next, we formulate the level of inventory at time t

as I(t); ti6 t6 si. Since the inventory is depleted by
the combined eJect of demand and deterioration, the
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Fig. 1. Graphical representation of inventory model.

inventory level at time t during the ith replenishment
cycle is governed by the following diJerential equa-
tion:

dI(t)
dt

=−f(t)− �I(t); ti6 t6 si (1)

with the boundary condition I(si) = 0. Solving the
diJerential equation (1), we have

I(t) = e−�t
∫ si

t
e�uf(u) du=

∫ si

t
e�(u−t)f(u) du;

ti6 t6 si: (2)

As a result, we obtain the time-weighted inventory
during the ith replenishment cycle as

Ii =
∫ si

ti
I(t) dt =

∫ si

ti

[
e−�t

∫ si

t
e�uf(u) du

]
dt

= (1=�)
∫ si

ti

[
e�(t−ti) − 1

]
f(t) dt; i = 1; 2; : : : ; n:

(3)

Similarly, the cumulative number of backorders at
time t during [si−1; ti) is

B(t) =
∫ t

si−1

�(ti − u)f(u) du; si−16 t6 ti;

i = 1; 2; : : : ; n (4)

and the cumulative number of lost sales at time t dur-
ing [si−1; ti) is

L(t) =
∫ t

si−1

[1− �(ti − u)]f(u) du; si−16 t6 ti;

i = 1; 2; : : : ; n: (5)

Consequently, the time-weighted backorders due to
shortages during the ith cycle is

Si =
∫ ti

si−1

B(t) dt =
∫ ti

si−1

(ti − t)�(ti − t)f(t) dt (6)

and the number of lost sales during the ith cycle is

Li = L(ti) =
∫ ti

si−1

[1− �(ti − u)]f(u) du: (7)

From (2) and (4), we have the order quantity at ti
in the ith replenishment cycle as

Qi = B(ti) + I(ti) =
∫ ti

si−1

�(ti − t)f(t) dt

+
∫ si

ti
e�(t−ti)f(t) dt; i = 1; 2; : : : ; n: (8)

Therefore, the purchase cost during the ith replen-
ishment cycle is

Pi = cf + cvQi = cf + cv

×
[∫ ti

si−1

�(ti − t)f(t) dt +
∫ si

ti
e�(t−ti)f(t) dt

]
;

i = 1; 2; : : : ; n (9)
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and the number of units sold in the ith replenishment
cycle is

Ri = B(ti) +
∫ si

ti
f(t) dt

=
∫ ti

si−1

�(ti − t)f(t) dt +
∫ si

ti
f(t) dt;

i = 1; 2; : : : ; n: (10)

Hence, if n replenishment orders are placed in
[0; H ], then the total relevant cost of the inventory
system during the planning horizon H is as follows:

TC(n; {si}; {ti})

=
n∑
i=1

(Pi + chIi + csSi + clLi)

=ncf + cv
n∑
i=1

[∫ ti

si−1

�(ti − t)f(t) dt

+
∫ si

ti
e�(t−ti)f(t)dt

]
+
ch
�

n∑
i=1

∫ si

ti

[
e�(t−ti)−1

]
f(t)dt

+cs
n∑
i=1

∫ ti

si−1

(ti − t)�(ti − t)f(t) dt

+(p+ cg)
n∑
i=1

∫ ti

si−1

[1− �(ti − t)]f(t) dt: (11)

Likewise, the total pro3t of the inventory system
during the planning horizon H is

TP(n; {si}; {ti})

=
n∑
i=1

(pRi − Pi − chIi − csSi − cgLi)

= (p−cv)
n∑
i=1

[∫ ti

si−1

�(ti − t)f(t)dt+
∫ si

ti
f(t)dt

]

−
(ch
�
+cv

) n∑
i=1

∫ si

ti

[
e�(t−ti)−1

]
f(t)dt

−ncf − cs
n∑
i=1

∫ ti

si−1

(ti − t)�(ti − t)f(t) dt

−cg
n∑
i=1

∫ ti

si−1

[1− �(ti − t)]f(t) dt: (12)

The problem is to determine n; {si} and {ti}
such that TC(n; {si}; {ti}) in (11) is minimized or
TP(n; {si}; {ti}) in (12) is maximized. It is obvious
from (11) and (12) that

TP(n; {si}; {ti}) + TC(n; {si}; {ti}) = p
∫ H

0
f(t) dt;

(13)

which is a constant. Therefore, we know that the
optimal solution that minimizes TC(n; {si}; {ti}) is
the same as the optimal solution that maximizes
TP(n; {si}; {ti}). The problem now is to determine
n; {si} and {ti} such that TC(n; {si}; {ti}) in (11) is
minimized.

4. Theoretical results

For a 3xed value of n, the necessary condi-
tions for TC(n; {si}; {ti}) to be minimized are:
9TC(n; {si}; {ti})=9 si = 0, and 9TC(n; {si}; {ti})=
9ti = 0, for i = 1; 2; : : : ; n.
Consequently, we obtain(
ch + �cv
�

)
(e�(si−ti) − 1)

= [cl − cl + cs(ti+1 − si)] �(ti+1 − si) + cl − cv
(14)

and∫ ti

si−1

{cs
[
�(ti − t) + (ti − t)�′(ti − t)

]
−(cl − cv)�′(ti − t)}f(t) dt

=(ch + �cv)
∫ si

ti
e�(t−ti)f(t) dt; i = 1; 2; : : : ; n;

(15)

respectively. Applying (14) and (15), we obtain the
following results:

Theorem 1. For any given n; we have:

(a) The solution to Eqs. (14) and (15) not only exists
but is also unique.
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(b) Eqs. (14) and (15) are the necessary and suf-
=cient conditions for =nding the absolute mini-
mum TC(n; {si}; {ti}).

Proof. See Appendix A for the proof of Part (a). Now;
we show that for any given n; Eqs. (14) and (15) are
the necessary and suLcient conditions for 3nding the
absolute minimum TC(n; {si}; {ti}). From (14); we
know that the optimal value of si (i.e.; s∗i ) is the inte-
rior point between ti and ti+1 because if si = ti or ti+1;
then Eq. (14) does not hold. TC(n; {si}; {ti}) is a con-
tinuous (and diJerentiable) function minimized over
the compact set [0; H ]2n−1; and hence an absolute min-
imum exists. The optimal value of ti (i.e.; t∗i ) cannot
be on the boundary since TC(n; {si}; {ti}) increases
when any one of tis is shifted to the end points 0 or H .
In addition; the solution to (14) and (15) is unique as
shown in Part (a) of this theorem. Consequently; Eqs.
(14) and (15) are the necessary and suLcient condi-
tions for the absolute minimum TC(n; {si}; {ti}). This
completes the proof.

Theorem 1 reduces the 2n-dimensional problem of
3nding {s∗i } and {t∗i } to a one-dimensional problem.
Since s∗0 = 0, we need only to 3nd t∗1 to generate s∗1
by (15), t∗2 by (14), and then the rest of {t∗i } and
{s∗i } uniquely by repeatedly using (14) and (15). For
any chosen t∗1 , if s

∗
n = H , then t∗1 is chosen correctly.

Otherwise, we can easily 3nd the optimal t∗1 by stan-
dard search schemes. The solution procedure for 3nd-
ing {t∗i } and {s∗i } can be obtained by the algorithm in
Yang et al. [16] with L= H=(4n) and U = H=n.
Next, we show that the total relevant cost

TC(n; {s∗i }; {t∗i }) is a convex function of the number
of replenishments. As a result, the search for the op-
timal replenishment number, n∗, is reduced to 3nd a
local minimum. For simplicity, let

TC(n) = TC(n; {s∗i }; {t∗i }): (16)

By applying Bellman’s principle of optimality [2],
we have the following theorem:

Theorem 2. TC(n) is convex in n.

Proof. By using the similar technique as in Teng
et al. [13] or Friedman [6]; the reader can easily prove
it.

To avoid using a brute force enumeration for 3nding
n∗ as in [3,4,9], we further simplify the search process
by providing an intuitively good starting value for n∗.
In fact, the holding cost per unit (including inventory
and deterioration costs) is ch + �cv. The unit penalty
cost of lost sales (which is the pro3t per unit) is cl−cv.
For simplicity, we may set the fraction of shortages
backordered �(ti − u) to be approximately equal to
�(1). Therefore, the expected unit cost of stockout ap-
proximately is �(1)cs + [1−�(1)](cl− cv). Substitut-
ing the above results into Eq. (15) as in Teng [12], we
obtain an estimate of the number of replenishments as

n= rounded integer of{(ch + �cv)[�(1)cs
+[1− �(1)](cl − cv )]Q(H)H= [2cf (ch + �cv

+�(1)cs + [1− �(1)](cl − cv))]}1=2; (17)

where Q(H) is the accumulative demand during the
planning horizonH . It is obvious that searching for the
optimal number of replenishments by starting with n
in (17) instead of n=1 will reduce the computational
complexity signi3cantly. The algorithm for determin-
ing the optimal replenishment number and schedule is
summarized as follows:

Algorithm for �nding optimal number and schedule:

Step 0: Choose two initial trial values of n∗, say n
as in (17) and n− 1. Use a standard search method to
obtain {t∗i } and {s∗i }, and compute the corresponding
TC(n) and TC(n− 1), respectively.
Step 1: If TC(n)¿TC(n−1), then compute TC(n−

2); TC(n− 3); : : : ; until we 3nd TC(k)¡TC(k − 1).
Set n∗ = k and stop.

Step 2: If TC(n)¡TC(n−1), then compute TC(n+
1); TC(n+ 2); : : : ; until we 3nd TC(k)¡TC(k + 1).
Set n∗ = k and stop.

Again, applying (14) and (15), we can characterize
the inFuence of the demand patterns on the length of
replenishment cycle and others as follow:

Theorem 3. If f(t) is increasing with respect to t;
then we obtain:

(a) The optimal inventory intervals are monotoni-
cally decreasing; i.e.;

s1 − t1¿s2 − t2¿ · · ·¿sn − tn: (18)



392 J.-T. Teng et al. / Operations Research Letters 30 (2002) 387–393

(b) The optimal shortage intervals are monotoni-
cally decreasing i.e.;

t2 − s1¿t3 − s2¿ · · ·¿tn − sn−1: (19)

(c) The optimal replenishment cycles are monoton-
ically decreasing i.e.;

t2 − t1¿t3 − t2¿ · · ·¿tn − tn−1: (20)

Proof. See Appendix B.

Note that if f(t) is decreasing, then the inequali-
ties in Theorem 3 are reversed. A simple economic
interpretation of the above results is as follows. Since
demand is increasing with time, we need to shorten
the inventory intervals (as well as the shortage inter-
vals, and hence the replenishment cycles) with time
in order to lower the holding and deterioration costs
(as well as the shortage cost, and hence the total cost),
and vice versa.

5. A numerical example

The proposed method is illustrated with the follow-
ing numerical example:

Example 1. We use the same example as in Pa-
pachristos and Skouri [9] to compare the diJerences.
Let f(t) = 10e0:98t ; �(x) = exp(−0:2x); H = 4; cf =
250; ch = 40; cs = 200; cv = 50; cl = 500; and �= 0:08
in appropriate units. Based on �(x)= exp(−0:2x); we
set the fraction of shortages backordered to be ap-
proximately equal to 1− 0:2 = 0:8. By (17); we have
n=12. Since TC(10)=30842:12; TC(11)=30777:66;
and TC(12) = 30782:50; we know that the optimal
number of replenishments is 11 and the optimal time
scheduling is shown in Table 1. Comparing the opti-
mal replenishment schedule here to that obtained by
Papachristos and Skouri, we have shorter shortage
intervals and longer inventory intervals than those in
Papachristos and Skouri [9].

Table 1
Optimal time schedule

i 1 2 3 4 5 6 7 8 9 10 11
ti 0.1719 0.9699 1.5565 2.0187 2.3991 2.7221 3.0023 3.2498 3.4712 3.6715 3.8542
si 0.8605 1.4770 1.9564 2.3481 2.6788 2.9649 3.2168 3.4417 3.6448 3.8299 4.0000
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Appendix A

Proof of Part (a) of Theorem 1. Similar to the proof
used by Hariga [8]; as well as by Papachristos and
Skouri [9]; the reader can easily prove that if f(t) is
positive and log-concave; then there exists a unique
solution t∗1 in (0; H) such that sn(t∗1 )=H . Since s0 =0
and t∗1 is unique; if we can prove that both s∗i generated
by (15) and t∗i+1 by (14) are uniquely determined; then
we prove (a). For any given si and ti; we set

F(x) = [cv − cl + cs(x − si)] �(x − si) + cl − cv:
(A.1)

Taking the 3rst derivative of F with respect to x,
we obtain

F ′(x) = cs
[
�(x − si) + (x − si)�′(x − si)

]
−(cl − cv)�′(x − si)¿ 0: (A.2)

Since F(si)=0, we know that there exists a unique
t∗i+1(¿si) such that

F(t∗i+1) =
(
ch + �cv
�

)
(e�(si−ti) − 1)¿ 0: (A.3)

Therefore, t∗i+1 is uniquely determined by (14).
Likewise, for any given si−1 and ti, let

G(x) = (ch + �cv)
∫ x

ti
e�(t−ti)f(t) dt: (A.4)

We then have G(ti) = 0, and G′(x) = (ch +
�cv)e�(x−ti)f(x)¿ 0. Therefore, there exists a
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unique s∗i (¿ti) such that

G(s∗i ) =
∫ ti

si−1

{cs
[
�(ti − t) + (ti − t)�′(ti − t)

]
−(cl − cv)�′(ti − t)}f(t) dt ¿ 0: (A.5)

This proved Part (a) of Theorem 1.

Appendix B

Proof of Theorem 3. Applying the Mean Value The-
orem to (15); we know that there exist x1 and x2 (with
si−1¡x2¡ti ¡x1¡si) such that(
ch + �cv
�

)
(e�(si−ti) − 1)f(x1)

={[cv−cl+cs(ti−si−1)] �(ti−si−1)+cl−cv}f(x2):

=
(
ch + �cv
�

)
(e�(si−1−ti−1) − 1)f(x2)

(by using (14)): (A.6)

If f(t) is an increasing function, then it is clear that(
ch + �cv
�

)
(e�(si−ti) − 1)¡

(
ch + �cv
�

)
(e�(si−1−ti−1) − 1): (A.7)

From (A.4), we know that G(x) is a strictly in-
creasing function of x. Thus, si − ti ¡ si−1 − ti−1, for
i = 1; 2; : : : ; n. This completes the proof of Part (a).
Similarly, by using (11) and (A.7), we have

[cv − cl + cs(ti+1 − si)] �(ti+1 − si) + cl − cv
¡ [cv − cl + cs(ti − si−1)] �(ti − si−1) + cl − cv:

(A.8)

Again, we know from (A.2) that F(x) is a strictly
increasing function. Therefore, we prove that ti+1 −
si ¡ ti − si−1, for i=1; 2; : : : ; n− 1. Finally, the proof
of Part (c) immediately follows Parts (a) and (b).
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